

Biologically-Inspired Intelligent Robots Using Artificial Muscles

Yoseph Bar-Cohen, JPL/Caltech, Pasadena, CA 818-354-2610, yosi@jpl.nasa.gov

http://ndeaa.jpl.nasa.gov/

Keynote Presentation

Mechatronics Workshop of the Belgian Universities Consortium Leuven, Belgium, October 30, 2002

NDEAA Technologies

Sensors

- USDC as a platform for bit integrated sensors
- In-process and in-service monitoring (SAW and Bulk Acoustic Wave (BAW) sensors)

• NDE

Materials properties and flaws characterization using LLW and polar backscattering

• Ultrasonic Medical Diagnostics and Treatment

- High power ultrasound (FMPUL): blood clot lysing, spine trauma and cancer treatment
- Acoustic Microscopy Endoscope (200MHz)

Advanced Actuators

- Ultrasonic/Sonic Driller/Corer (USDC) for planetary exploration
- Ultrasonic motors (USM), Surface Acoustic Wave (SAW) motors and Piezopump
- Artificial muscles using electroactive polymers

• Applications: Radiation sources, Robotics, etc.

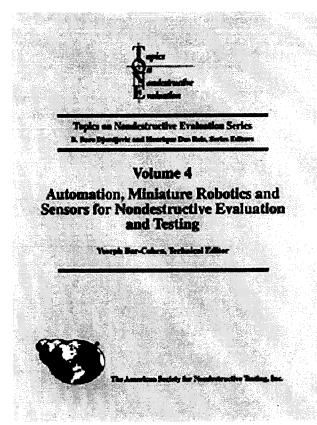
- Ferrosource for multiple radiation types
- Biomimetics
- Noninvasive geophysical probing system (NGPS)
- Multifunction Automated Crawling System (MACS)
- Adjustable gossamer and membrane structures
- MEMICA as Haptic interfaces

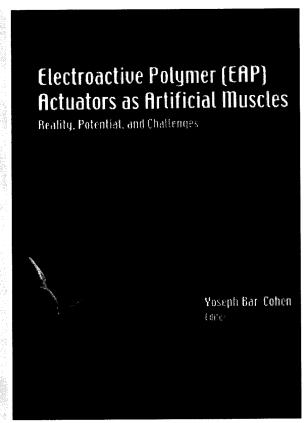
NDEAA related projects

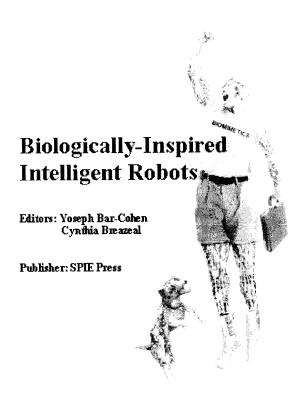
Piezopump

EAP/Artificial Muscles

USDC




ERF/MEMICA



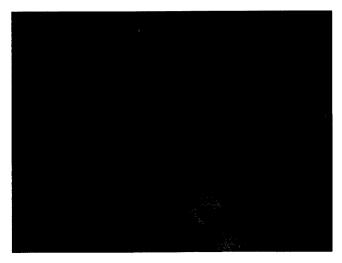
Related recent and upcoming books

http://ndeaa.jpl.nasa.gov/nasa-nde/yosi/yosi-books.htm

Nature as a model for robotics engineering

Tumbleweed

Helicopter (Tipuana tipu)


Glider
(Alsomitra macrocarpa)

Aerodynamic dispersion of seeds

(Courtesy of Wayne's Word)

Ref: http://waynesword.palomar.edu/plfeb99.htm#helicopters

Courtesy of William M. Kier, of North Carolina

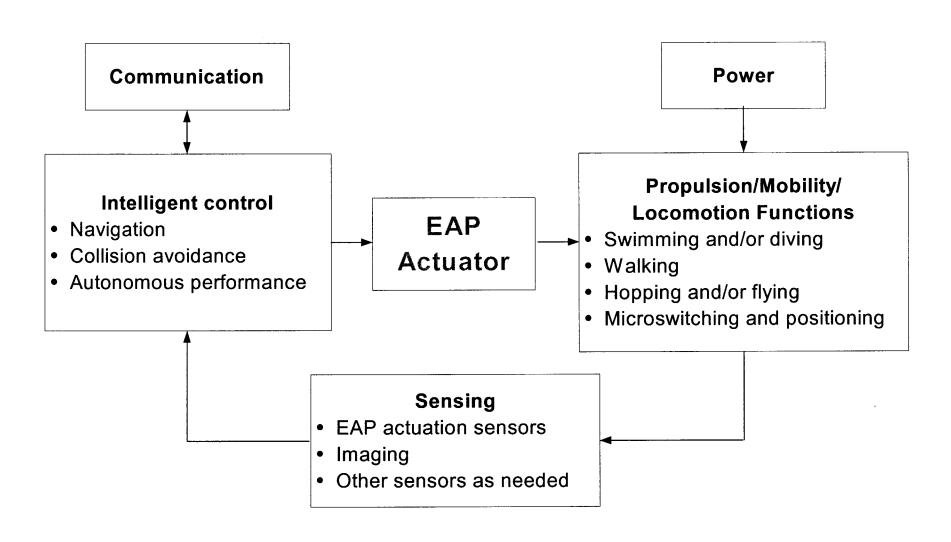
Courtesy of Roger T. Hanlon, Director, Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA

Octopus adaptive shape, texture and camouflage

Ref: http://www.pbs.org/wnet/nature/octopus/

Lemur - 6-legged robots at JPL

Robot that responds to human expressions


Cynthia Breazeal and her robot Donna

Elements of an EAP actuated robots

Background

- Most conventional mechanisms are driven by actuators requiring gears, bearings, and other complex components.
- Emulating biological muscles can enable various novel manipulation capabilities that are impossible today.
- Electroactive polymers (EAP) are emerging with capability that can mimic muscles to actuate biologically inspired mechanisms.
- EAP are resilient, fracture tolerant, noiseless actuators that can be made miniature, low mass, inexpensive and consume low power.
- EAP can potentially be used to construct 3-D systems, such as robotics, which can be imagined today as science fiction.

Comparison between EAP and widely used transducing actuators

Property	EAP	EAC	SMA
Actuation strain	>10%	0.1 - 0.3 %	<8% short fatigue life
Force (MPa)	0.1 - 3	30-40	about 700
Reaction speed	μsec to sec	μsec to sec	sec to min
Density	1- 2.5 g/cc	6-8 g/cc	5 - 6 g/cc
Drive voltage	2-7V/	50 - 800 V	NA
	$10-100V/\mu m$		
Consumed Power*	m-watts	watts	watts
Fracture toughness	resilient, elastic	fragile	elastic

^{* &}lt;u>Note</u>: Power values are compared for documented devices driven by such actuators.

BIOLOGICALLY INSPIRED ROBOTICS

IN-SITU MULTI-TASKING MISSIONS USING SCALABLE AUTONOMOUS ROBOTS FOR COLONIZED EXPLORATION

Multiple locomotion capabilities

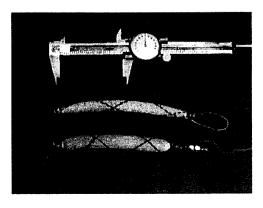
Flying, walking, swimming & diving

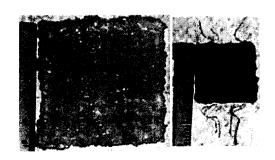
Hopping, flying, crawling & digging

Coordinated robotics

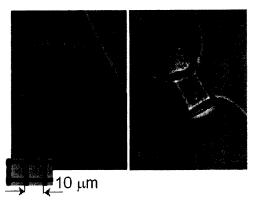
Neural networks & expert systems

Models for EAP Actuated Flexible Robots

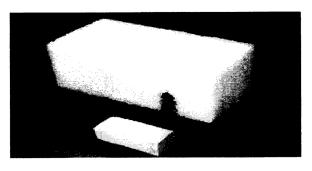



Non-Electro Active Polymers (NEAP)

- Conductive and Photonic Polymers
- Smart Structures and Materials
- Deformable Polymers
 - Chemically Activated
 - Shape Memory Polymers
 - Inflatable Structures
 - Light Activated Polymers
 - Magnetically Activated Polymers


Non-electrical mechanically activated polymers

McKibben Artificial
Muscles
Air Pressure activation
(Hannaford, B.U. Washington)


Ionic Gel Polymers Chemical transduction (P. Calvert, UA)


Laser Illuminated Polymer Light activation (H. Misawa, Japan)

Ferrogel
Magnetic Activation (M. Zrinyi,
Hungary)

Shape Memory Polymers Heat/pressure activation (W. Sokolowski, JPL)

Smart Structures
Polymers with Stable shapes
(S. Poland, Luna Innovations, VA

Historical prospective

- Roentgen [1880] is credited for the first experiment with EAP electroactivating rubber-band to move a cantilever with mass attached to the free-end
- Sacerdote [1899] formulated the strain response of polymers to electric field activation
- Eguchi [1925] discovery of electrets* marks the first developed EAP
 - Obtained when carnauba wax, rosin and beeswax are solidified by cooling while subjected to DC bias field.
- Another important milestone is Kawai [1969] observation of a substantial piezoelectric activity in PVF2.
 - PVF2 films were applied as sensors, miniature actuators and speakers.
- Since the early 70's the list of new EAP materials has grown considerably, but the most progress was made after 1990.

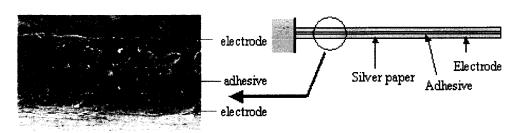
^{*} Electrets are dielectric materials that can store charges for long times and produce field variation in reaction to pressure.

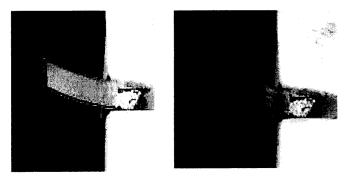
Electroactive Polymers (EAP)

ELECTRONIC EAP

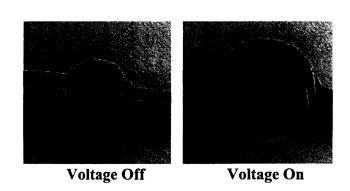
- Dielectric EAP
- Electrostrictive Graft Elastomers
- Electrostrictive Paper
- Electro-Viscoelastic Elastomers
- Ferroelectric Polymers
- Liquid Crystal Elastomers (LCE)

IONIC EAP

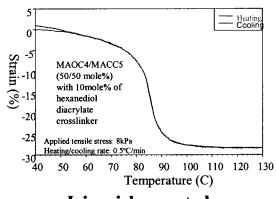

- Carbon Nanotubes (CNT)
- Conductive Polymers (CP)
- ElectroRheological Fluids (ERF)
- Ionic Polymer Gels (IPG)
- Ionic Polymer Metallic Composite (IPMC)


Electronic EAP

ELECTRIC FIELD OR COULOMB FORCES DRIVEN ACTUATORS

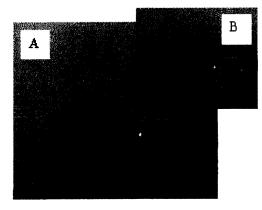

Paper EAP

[J. Kim, Inha University, Korea]


Ferroelectric

[Q. Zhang, Penn State U.]

Dielectric EAP

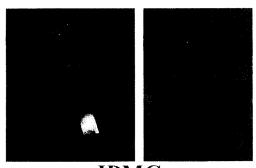

[R. Kornbluh, et al., SRI International]

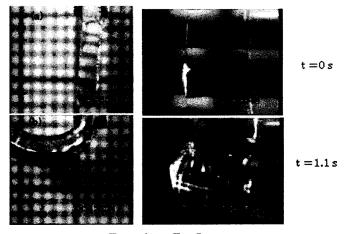
Liquid crystals

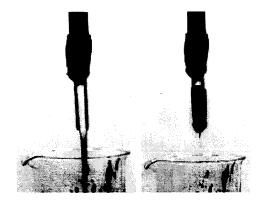
(Piezoelectric and thermo-mechanic)

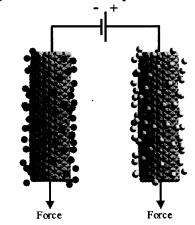
[B. R. Ratna, NRL]

Graft Elastomer


[J. Su, NASA LaRC]


Ionic EAP


Turning chemistry to actuation


IPMC
[JPL using ONRI, Japan & UNM materials]

Ionic Gel
[T. Hirai, Shinshu University, Japan]

ElectroRheological Fluids (ERF)
[ER Fluids Developments Ltd]

Carbon-Nanotubes
[R. Baughman et al, Honeywell, et al]

Current EAP Advantages and disadvantages

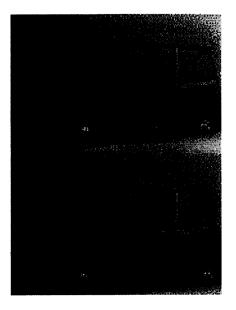
EAP type	Advantages	Disadvantages
Electronic EAP	 Can operate in room conditions for a long time Rapid response (mSec levels) Can hold strain under DC activation Induces relatively large actuation forces 	 Requires high voltages (~150V/μm) Requires compromise between strain and stress Glass transition temperature is inadequate for low temperature actuation tasks
Ionic EAP	 Large bending displacements Provides mostly bending actuation (longitudinal mechanisms can be constructed) Requires low voltage 	 Except for CPs, ionic EAPs do not hold strain under DC voltage Slow response (fraction of a second) Bending EAPs induce a relatively low actuation force Except for CPs, it is difficult to produce a consistent material (particularly IPMC) In aqueous systems the material sustains hydrolysis at >1.23-V

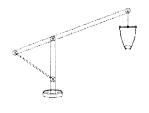
Applications of EAP to potential planetary tasks

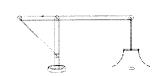
Considered planetary applications

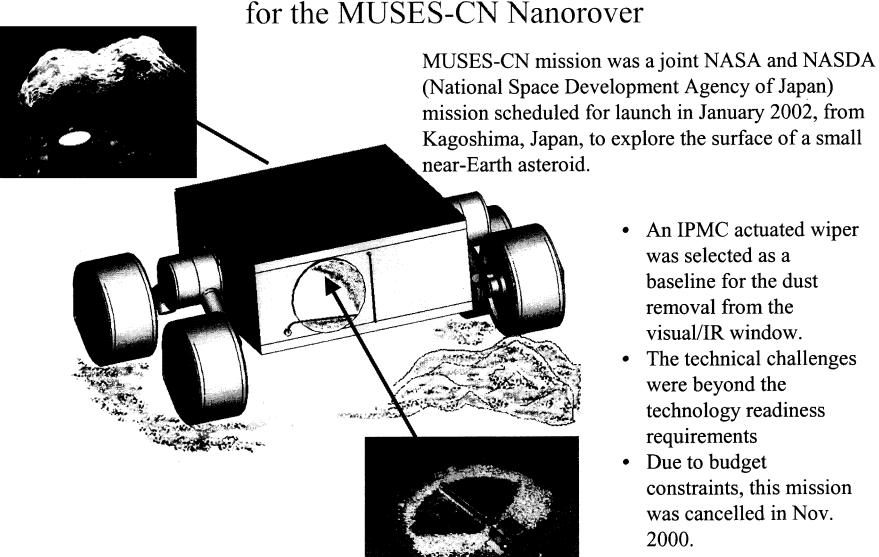
Dust wiper

Bending EAP is used as a surface wiper



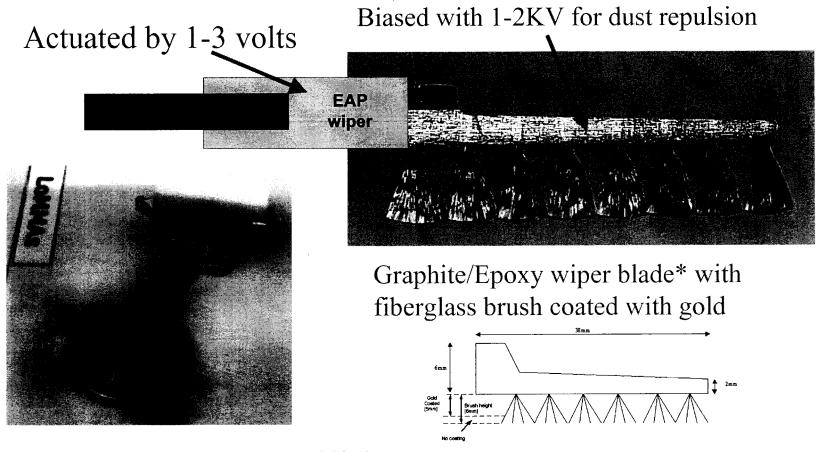

Sample handling robotics


Extending EAP lowers a robotic arm, while bending EAP fingers operate as a gripper



EAP Dust Wiper

for the MUSES-CN Nanorover

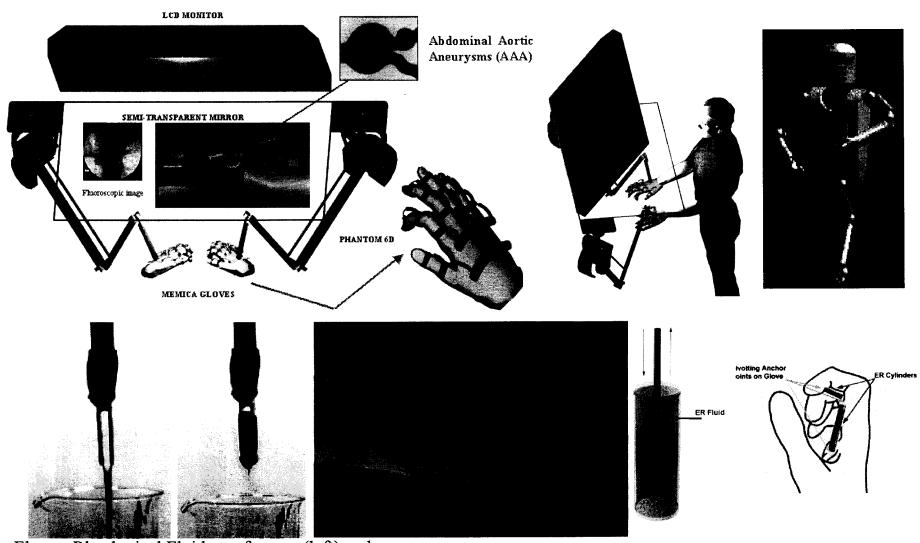


- An IPMC actuated wiper was selected as a baseline for the dust removal from the visual/IR window.
- The technical challenges were beyond the technology readiness requirements
- Due to budget constraints, this mission was cancelled in Nov. 2000.

Surface wiper activated by EAP

^{*} Made by Energy Science Laboratories, Inc., San Diego, California

Challenges and solutions to the application of JPL IPMC as bending actuators


Challenge	Potential Solution
Fluorinate base - difficult to bond	Etching the surface makes it amenable to bonding
Extremely sensitive to dehydration	Apply protective coating over the etched IPMC
Off-axis bending actuation	Constrain the free end and use a high ratio of length/width
Operate at low temperatures	IPMC was demonstrated to respond at -100°C in vacuum
Remove submicron dust	Use effective wiper-blade design and high bias voltage
Reverse bending drift under DC voltage	Limit the operation to cyclic activation to minimize this effect, and use cations such as Li ⁺ rather than Na ⁺ .
Protective coating is permeable	Develop alternative coating, possibly using multiple layers
Electrolysis occurs at >1.23-V	Use efficient IPMC that requires low actuation voltage
Residual deformation particularly after intermittent activation	It occurs mostly after DC or pulse activation and it remains a challenge
Difficulties to assure material reproducibility	Still a challenge. May be overcome using mass production and protective coating.
Degradation with time due to loss of ions to the host liquid	Requires electrolyte with enriched cation content of the same species as in the IPMC

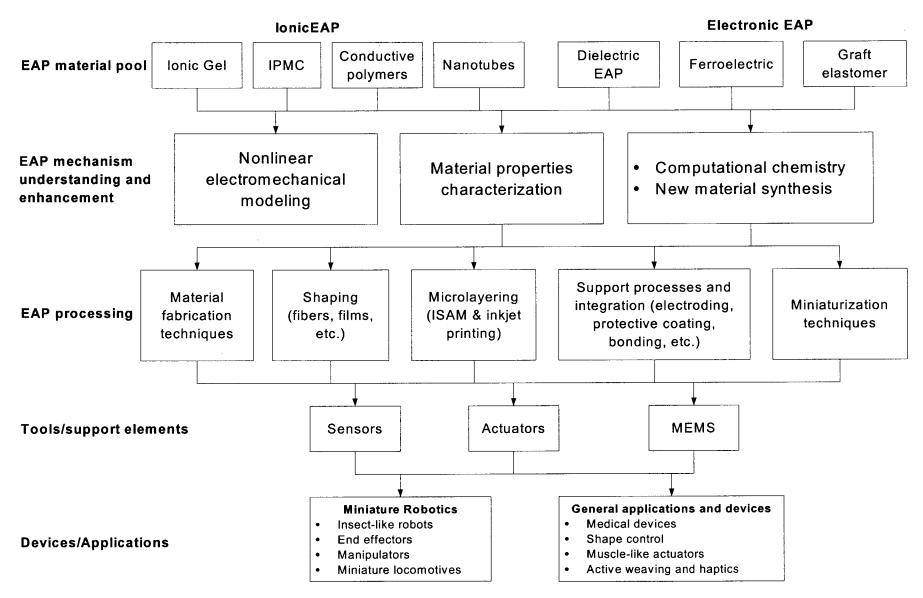
MEMICA

(MEchanical MIrroring using Controlled stiffness and Actuators)

Electro-Rheological Fluid at reference (left) and activated states (right). [Smart Technology Ltd, UK]

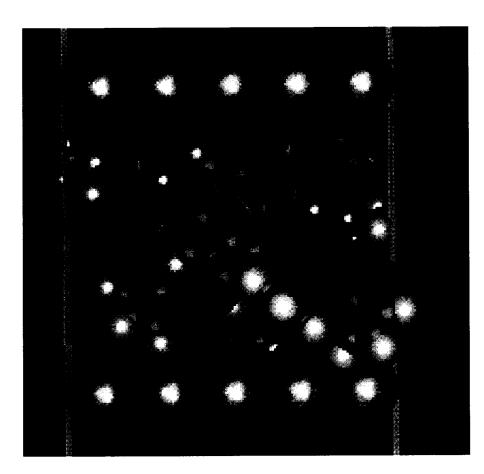
MEMICA-based exoskeleton for countermeasure of astronauts bones and muscles loss in microgravity. It has potential application as:

- Assist patient rehabilitation
- Enhance human mobility



Elements of the EAP Infrastructure

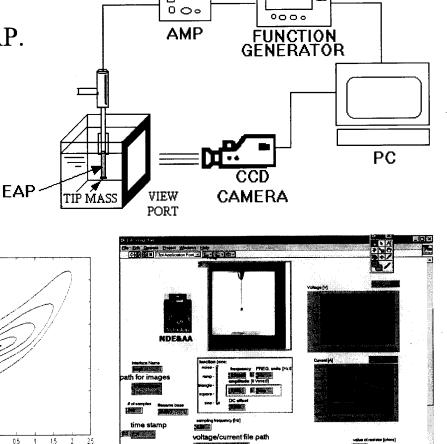
EAP infrastructure

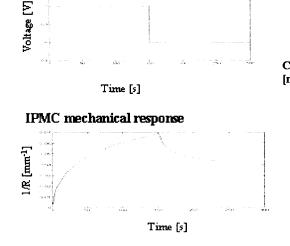


Computational chemistry

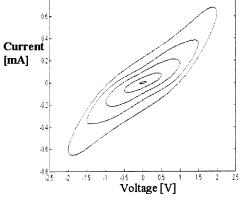
Computational chemistry may lead to material design tools using comprehensive modeling to methodically synthesize effective new EAPs

(NASA-LaRC)




EAP Material Characterization

• Different methods of characterization are needed for the various types of EAP.


• Efforts are underway to develop a database that allows comparing with properties of other actuators

Frequency - 0.05 Hz

Activation signal

Applications

Underway or under consideration

Mechanisms

- Lenses with controlled configuration
- Mechanical Lock
- Noise reduction
- Flight control surfaces/Jet flow control
- Anti G-Suit

Robotics, Toys and Animatronics

- Biologically-inspired Robots
- Toys and Animatronics

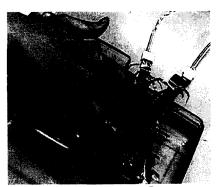
• Human-Machine Interfaces

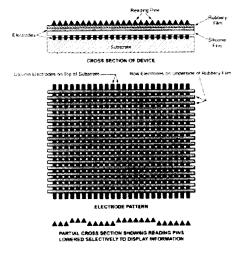
- Haptic interfaces
- Tactile interfaces
- Orientation indicator
- Smart flight/diving Suits
- Artificial Nose
- Braille display (for Blind Persons)

• Planetary Applications

- Sensor cleaner/wiper
- Shape control of gossamer structures

Medical Applications


- EAP for Biological Muscle Augmentation or Replacement
- Miniature in-Vivo EAP Robots for Diagnostics and Microsurgery
- Catheter Steering Mechanism
- Tissues Growth Engineering
- Interfacing Neuron to Electronic
 Devices Using EAP
- Active Bandage
- Liquid and Gases Flow Control
- Controlled Weaving
 - Garment and Clothing
- MEMS
- EM Polymer Sensors & Transducers



Human-Machine Interfaces

- Interfacing human and machine to complement or substitute our senses would enable important medical applications.
- Researchers at Duke U. connected electrodes to a brain of a money and were able to control a robotic arm. This breakthrough opens the possibility that the human brain would be able to operate prosthetics that are driven by EAP.
- Feedback is required to "feel" the environment around the artificial limbs. Currently, researchers are developing tactile sensors, haptic devices, and other interfaces.

Tactile Interface (S. Tadokoro, Kobe U., Japan)

Active Braille Display



Platforms for EAP Implementation

Android making facial expressions

[Sculptured by D. Hanson, U. of Texas, Dallas, and instrumented by jointly with G. Pioggia, University of Pisa, Italy]

Robotic hand platform for EAP

[G. Whiteley, Sheffield Hallam U., UK]

Other References

Proceedings

<u>SPIE</u>

- Y. Bar-Cohen, (Ed.), "Electro-Active Polymer (EAP) Actuators and Devices," Proceedings of the SPIE's 6th Annual International Symposium on Smart Structures and Materials, Vol. 3669, ISBN 0-8194-3143-5, (1999), pp. 1-414.
- Y. Bar-Cohen, (Ed.), Proceedings of the SPIE's Electroactive Polymer Actuators and Devices Conf.,
 7th Smart Structures and Materials Symposium, Vol. 3987, ISBN 0-8194-3605-4 (2000), pp 1-360.
- Y. Bar-Cohen, (Ed.), Proceedings of the SPIE's Electroactive Polymer Actuators and Devices, 8th Smart Structures and Materials Symposium, Vol. 4329, ISBN 0-8194-4015-9 (2001), pp. 1-524.
- Y. Bar-Cohen, (Ed.), Proceedings of the SPIE's Electroactive Polymer Actuators and Devices, 9th Smart Structures and Materials Symposium, Vol. 4695, (2002), to be published.

MRS

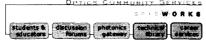
- Q.M. Zhang, T. Furukawa, Y. Bar-Cohen, and J. Scheinbeim (Eds), "Electroactive Polymers (EAP)," ISBN 1-55899-508-0, 1999 MRS Symposium Proceedings, Vol. 600, Warrendale, PA, (2001), pp 1-336.
- Y. Bar-Cohen, Q.M. Zhang, E. Fukada, S. Bauer, D. B. Chrisey, and S. C. Danorth (Eds), "Electroactive Polymers (EAP) and Rapid Prototyping," ISBN 1-55899-634-6, 2001 MRS Symposium Proceedings, Vol. 698, Warrendale, PA, (2002), pp 1-359.

Websites

• WW-EAP Webhub: http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/EAP-web.htm

WW-EAP Newsletter

http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/WW-EAP-Newsletter.html



SPIE Web

The website for optics, photonics, and imaging

Photonics **Fabrication Europe**

28 October - 1 November 2002, Brugge, Belgium

SPIE HOME PHOTONICS FABRICATION EUROPE

CONFERENCES

Transducing Materials and Devices (PF11)

Submit an Abstract for this Conference

Conference Chairs: Yoseph Bar-Cohen, Jet Propulsion Lab. (USA); Kenji Uchino, The Pennsylvania State Univ. (USA)

Program Committee: Anand K. Asundi, Nanyang Technological Univ. (Singapore); Arthur Ballato, Army Research Lab. (USA); Hubert Borgmann, Messe Bremen GmbH (Germany); Rolf Diederichs, NDT Internet Publishing (Germany); David C. Jiles, Iowa State Univ. (USA); John Kosinski, Army Research Lab. (USA); Chang Liu, Univ. of Illinois/Urbana-Champaign (USA); Paul H. Holloway, Univ. of Florida (USA); Elizabeth A. McLaughlin, Naval Undersea Warfare Ctr. (USA); Constantinos Mavroidis, Rutgers Univ. (USA); Kiyoshi Nakamura, Tohoku Univ. (Japan); Kazuhiro Otsuka, National Institute of Advanced Industrial Science and Technology (Japan); Fotios Papadimitrakopoulos, Univ. of Connecticut (USA); Geoffrey M. Spinks, Univ. of Wollongong (Australia); Kazuhiko Yamanouchi, Tohoku Institute of Technology (Japan); Miklos Zrinyi, Budapest Univ. of Technology and Economics (Hungary)

Transducing materials play an important role in our daily life being responsible for the functionality of many instruments and devices that are commonly used. New materials are continuing to emerge,

INFORTANT DATES

- Conference Date: 28 October - 1 November 2002
- Abstract Due: 7 June 2002
- 30 September 2002

SPONSORED BY

Manuscript Due:

Smart Structures and Materials NDE for Health Monitoring and Diagnostics

Upcoming

conferences

SPIEWORKS

^{for}2-6 March 2003, San Diego, California, USA

SPIE HOME SMART STRUCTURES (INDE

CONFERENCES

Electroactive Polymer Actuators and Devices (EAPAD) (ss03)

CONFERENCES

Submit an Abstract for this Conference

Conference Chair: Yoseph Bar-Cohen, Jet Propulsion Lab

Cochair: Geoffrey M. Spinks, Univ. of Wollongong (Australia)

Program Committee: Michael S. Banik, Boston Scientific Corp.; Ray H. Baughman, Univ. of Texas/Dallas; Paul D. Calvert, Univ. of Arizona; Richard O. Claus, Virginia Polytechnic Institute and State Univ.; Pierre-Gilles de Gennes, ESPCI (France); Danilo De Rossi, Univ. degli Studi di Pisa (Italy); Rainer W. Gülch, Eberhard-Karls-Univ. Tübingen (Germany); Olle Inganäs, Univ. Linköping (Sweden); Jaehwan Kim, Inha Univ. (Korea); Roy D. Kornbluh, SRI International; Gabor Kovacs, EMPA (Switzerland); Wen-Liang Liu, Industrial Technology Research Institute (Taiwan); Chris Melhuish, Univ. of the West of England (UK); Siavouche Nemat-Nasser, Univ. of California/San Diego; Yoshihito Osada, Hokkaido Univ. (Japan); Toribio F. Otero, Univ. Politecnica de Cartagena (Spain); Mohsen Shahinpoor, Environmental Robotics, Inc.; Valery P. Shibaev, Moscov State Univ. (Russia); Elisabeth Smela, Univ. of Maryland/College Park; Peter Sommer-Largen, Risg National Lab. (Denmark); Ji Su, NASA Langley Research Ctr.; Minoru Taya, Univ. of Washington: Gordon G. Wallace, Univ. of Wollongong (Australia): Di Ming Zhang, Th

IMPORTANT DATE

- Conference Dates 2-6 March 2003
- Abstract Due: 31 July 2002
- Manuscript Due: 3 February 2003

SPONSORED BY

SUMMARY

- Artificial technologies (AI, AM, and others) for making biologically inspired devices and instruments are increasingly being commercialized.
 - Autonomous robotics, wireless communication, miniature electronics,
 effective materials, powerful information technology are some of the critical support technologies that have evolved enormously in recent years.
- Materials that resemble human and animals are widely used by movie industry and animatronics have advanced to become powerful tools.
- Electroactive polymers are human made actuators that are the closest to resemble biological muscle potentially enabling unique robotic capabilities.
- Technology has advanced to the level that biologically inspired robots are taking increasing role making science fiction ideas closer to an engineering reality.

The grand challenge for EAP as Artificial Muscles

